DEGREE OF MASTER OF SCIENCE

MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTING

B1 Numerical Linear Algebra and Numerical Solution
of Differential Equations

HILARY TERM 2016
FRIDAY, 15 JANUARY 2016, 9.30am to 11.30am

Candidates should submit answers to a mazimum of four questions that include an answer to at
least one question in each section.

Please start the answer to each question on a new page.
All questions will carry equal marks.

Do not turn this page until you are told that you may do so
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Section A: Numerical Solution of Differential Equations

1. The function u(t), t > 0, with u(0) = uog, is determined for ¢ > 0 by

u = f(t) u))

where f is a uniformly continuous function of the second argument satisfying a Lipshitz con-
dition
,f(t,ul) — f(t, Ug)l < L|u1 — u1|, Yui,u2 € R and t > 0.

A discrete solution is calculated at times t, = nAt, n = 0,1,2,..., where At > 0 is a fixed

time step. Let u, = u(t,) and fn, = f(tn,un). An approximate solution for u at these times,
denoted U,, is determined for n = 0,1,2,..., by Ralston’s method:

kl = f(t’ny Un):
2
B = flint 204U+ %Atkl),

1
Upt1 = Up+ ZAt(kl + 3k2).

(a) [10 marks] Show that the scheme is consistent and that the truncation error is second
order in At.

(b) [9 marks] Prove that the error, e, = un — Up, tends to zero as At — 0.

(c) [6 marks] Determine an estimate for the maximum error at ¢ = 1 using uniform time
steps At < 1, when

f(t,u) = tan"lu.
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2. The function u(t), t > 0 with «(0) = ug, is determined for ¢t > 0 by
u' = f(u),

where f is a uniformly differentiable function of w.

A linear multistep method for numerical approximation of this equation at the points ¢, = nAt,
n=20,1,2,..., with At > 0 is defined by

Uy = wuy,
Up = U+ Atf(Up),

At
Un+1 = Un+i‘é‘(5Fn+1+8Fn_Fn—1)) n=12...,

where F,, = f(Uy,), n=0,1,2,.... Denote u, = u(t,) and f, = f(un).
(a) [3 marks] Show that this method is zero stable and explain the significance of this condi-
tion.

(b) [6 marks] Define a truncation error by

Uyl — U 1
To= =" = 5 (fwi1 +8fn — fa1).

Show that this method is third order in At as At — 0.

(c) [10 marks] Using the function f(u) = Au, and a characteristic polynomial, denoted
m(z; At), which you should define, describe what is meant by an interval of absolute

stability. By considering values of At = AAt near At = 0 and At = —6, or values of

dz
——, where z is a root of the characteristic polynomial, show that this method cannot be

dAt _ __
absolutely stable when At is small and positive or At is a little less than —6.

(d) [6 marks] The implicit method is replaced by a semi-implicit method:

A

Un+1 = Un + Atf(Un),
At ~
Un+1 = Up+ —1—2*(5f(Un+1) + 8F, — Fn——l)-

Explain with reasons whether the interval of absolute stability has increased or decreased
in extent compared to that for the fully implicit scheme.
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3. The function u(z,t), defined for 0 < z < 1 and ¢ > 0, satisfies
ou_ o
ot Ox?’
with intial data u(z,0) = up(z) and boundary data «(0,t) = u(1,t) = 0.

For some integer M > 0, h = 1/M, the partial differential equation is discretised on a uni-
form mesh . = rh, r = 0,1,2,--- ,M and t, = nA{, n = 0,1,2,---. Denote U as an
approximation for u” = u(z,,t,) and

n n n L n\2 12
07l = o 107 107 = (@)

Let u = At/h2.
(a) [8 marks] For 0< 0 <1,r=1,...,M —1, the equation is discretised by a f-method:

UPtt = UP + 0u(URH = 200+ UPAD) + (1= 0)p(Uryy — 207 + Uy).

Use a maximum principle, which you should state but not prove, to show that provided
2p(1 — 6) < 1, then
IlUn+1”loo < “U()“loo’ n=12....

(b) [8 marks] The method in (a) is replaced by a predictor-corrector method,
forr=1,...,M -1,
Ut = UP 4+ w(Uy, — 207 + ULy),

UMt = Up 4+ (07 — 20771 + U7,
Show that provided p < 1/4,
N0 e < NNty 2 =1,2,...
(¢) [9 marks] A third discretisation is given for r = 1,...,M — 1, by
U +4Ur T+ UL = Ul +4UT + Uy + 6u(U — 207 + Uy).

Formulate this discrete representation as a matrix problem. Using the vectors z? = (2F)
with 2£ = sinprmh, p,7 = 1,... M — 1, or otherwise, show that for this method

NU™, < WU, n=1,2,...,

provided p < 1/3.
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4. The functions u(z,t), v(z,t), defined for z € R and ¢ > 0, satisfy, for real o, § and t > 0, the
evolutionary equations

ou 32u 2 9
-a'—t" = @—au—ﬁv, (1)
o _ o "
ot 0z?’
with initial data u(z,0) = uo(z) > 0, v(z,0) = vo(z) = 0 where |ug| — 0, |vo| — 0 as |z| = .
The continuous system is discretised on a uniform mesh z, = rh, r = 0,£1,£2,---, and

tn = nAt, n = 1,2,--- with h > 0 and At > 0 such that U, V* are approximations for
ul = u(xp, t,) and v = v(z,, t,) respectively.
Define the lp-norm of data {U,} by [[U||1, = (A Y22 _o [UT|2)1/ ? and semi-discrete Fourier
transform, U(k) by U(k) = R Y2 e *hy,.
(a) [7 marks] The equation (2) is discretised by
vptl-yr 1
Ty = (Vi 2V VL)
Define practical stability and von Neumann stability for a discrete method in terms of
the lp-norm and show that this discretisation is practically stable provided At < %h?.

(b) [7 marks] Equation (1) is discretised by

untl—pr 1
= WU — 207+ Ur) — *Up — AV
Define )
Un(k)
W" = .
()
Determine the matrix A such that W™l = AW™,
(¢) [6 marks] Deduce that the solutions of the combined scheme will reduce to zero as n — co

provided
2h*

L —.
=4+ a?h?

(d) [5 marks] If the equation (2) was replaced by

At

ov _ Da%

ot a2

with real D > 0, determine the time step restriction that would be required to guarantee
that the numerical approximations for v and v both decay to zero for a large number of
time steps.

You may use without proof Parseval’s Identity ||U™||;, = ﬁ”f]"l[h
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Section B: Numerical Linear Algebra

5. (a)

[8 marks] State the Jacobi algorithm for computing an approximate solution to the square
system of equations Az = b. State and prove conditions such that the Jacobi algorithm
converges to A~!b. Give an example of a matrix for which the prior conditions given are
sharp, in that if they are not satisfied then the Jacobi algorithm need not converge to
A7,

[8 marks] Consider the QR factorisation of A € R™*™ where A has the properties that:
m > n, the columns of A are linearly independent, and A;; =0 unless j =i or j =1 — 1.
Which entries of @ and R should be exactly zero?

[9 marks] State an efficient algorithm using Givens rotations for computing the matrix
R in the QR factorisation of A € R™*" where A has the properties in part (b) of this
question, What is, to leading order, the number of floating point operations used in the
stated algorithm? (Consider the evaluation of a trigonometric function to be a single
floating point operation and assigning a value to be without cost.)
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(a) [9 marks] Design and state an algorithm to approximately solve the square linear system
of equations Az = b, for A symmetric (A = A*), by updating the estimate z(*) along the
direction Ap*) where p®) = b — Az(k) — Br_1p*~V, Bi_q is selected so that Ap*®) and
Ap(k‘l) are orthogonal, and p(® = p— Az©) where £ is the initial approximate solution.

(b) [8 marks] State and describe the GMRES algorithm; specifically discuss: the subspace
minimised over, the class of matrices for which the method is designed, and any stability
issues.

(c) [8 marks] The algorithm GMRES requires solving the least squares subproblem
min ““b”gel - I—jkyH
y 2

at iteration k£ where: e; is the vector of all zeros except the first entry which is equal to
one, b is the vector in the equation Az = b being approximately solved, and Hj, € RFtLE ig
in upper-Hessenberg form, in that H k(i,7) =0for i > j+ 1. Assume a QR factorisation
of Hy has already been computed, Hy = QpRj where Q) € R*¥t1A+1 i ynitary and

Ry = ( ]({)k > where Ry, is upper triangular. State an efficient algorithm for computing
H,  higg

0 Ppso2kt1
number of floating point operations required.

the QR factorisation of fIk+1 = ( > and calculate, to leading order, the
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